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Option 1: Rotation of a Rigid Body

A snooker ball is a uniform sphere of mass m and radius a. It rests on a horizontal table. The
coefficient of friction between the ball and the table is u. The ball is struck with a cue which exerts
a horizontal impulse of magnitude J at a point %a above the table. The line of action of the impulse
is in a vertical plane through the centre of the ball. After the ball is struck, it has initial speed u.

5
(i) Show that the initial angular speed is 4—”— Deduce that slipping occurs. [6]
a

(i) Find expressions for both the velocity and the angular velocity of the sphere at time ¢ after the
ball is struck. [7]

(iii) Find the time at which the ball stops slipping. [3]

(iv) The sphere then rolls without slipping. Show that it moves with constant velocity and
calculate this velocity. Find also the magnitude of the frictional force, justifying your answer.

(4]
Option 2: Vectors
(-1\ ( 2 -1 (1) (0 0
(a) Forces | 2|,{—1|and|~1| act at points with position vectors | 1|, |2 |and | 1| respectively.
~1 0 1 0)\0 A

Show that the forces reduce to a couple. Find the value of A for which the magnitude of the
couple is minimised. What is this minimum value? ‘ [9]

(b) The position vector of a particle P of mass m at time ¢ is

2coswt
r=|-—-sinwt |,
2t
where @ is a positive constant.
(i) Calculate the angular momentum of P about the origin. [6]

(i) Hence find the torque about O acting on the particle. Show that for ¢ > O the torque is
never zero. [5]
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Option 3: Stability and Oscillations

A rigid circular hoop of radius a is fixed in a vertical plane. A light elastic string of natural length
a and modulus A is attached to the highest point of the hoop. The other end of the string is attached
to a small, smooth ring of mass m which is threaded onto the hoop. When the system is in
equilibrium, the angle the string subtends at the centre of the circle is 6, as shown in Fig. 3.

Fig.3

() Find the potential energy, V, of the system in terms of 6, and show that
dav 1 mg ) i1 .
—£= Aacos>0 (—1+2(1—T)51n-2-¢9). [6]

(i) Show that there is a position of equilibrium at 6 = z. Show further that it is stable if 2 < 2mg.
Investigate the stability when A > 2mg and when A = 2mg. [8]

(iii) Show that if A > 2mg there is also a position of equilibrium for 8 < z and that if A < 2mg
the only equilibrium position is at 8 = 7. [6]

Option 4: Variable mass

A rocket in deep space is heading for a space station. Gravitational forces may be neglected. The
initial mass of the rocket is m and the propulsion system ejects matter at a mass rate k with speed u
relative to the rocket. The rocket starts from rest at a distance a from the space station and travels in
a straight line towards it. At time ¢ the velocity of the rocket is v. The rocket ejects a total mass of %mo.

d
(i) Show that (m, — kt)gv- = uk and hence find an expression for v at time ¢. [8]

um
(i) Show that the distance travelled while matter is being ejected is -270 (1 —1n2). [8]
[You may use the result f Inx dx = xInx — x (+ constant) without proof.]

um m
(iii) If a = Tkg show that the total time taken to reach the space station is —k—o. [4]
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1(3i) J =mu Bl
NP —J-%a:%maza) M1
u
—> Al
J_, — % mau :%maza) M1 eliminate J, m
w= _du S0 ang.speed = Su El
da da
u # aw = slipping occurs El
[ 6]
(i) mi=-F M1 N2L
=—umg Bl F = umg stated or used
X=u—ugt Al
g 23
£ma“0 =alF = umga M1 ) .
Al e_quatlon_of rotation
(ignore sign)
L §o2He M1
2a
: 50 5
f=_2 2K, Al cao
da 2a
(7]
(iii)  stops slipping when x = aé B1
u_ﬂgt:_%ujf’%t M1 use condition
. u Al
14sg cao
[3]
(V) 5=ab=3=ab M1
F#0= X and 6 have opposite signsso =6 =0 El
therefore constant velocity of u —yg(lfzg) = %u F1 fF)IIOW ,the" ¢in either
X oraf
F=-mx=0 B1 must be justified

(4
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2(a) -1y (2) (-1} (o0 M1
ER=1 2 1+ -1+ -11=10 Al evidence of working needed
-1 0 1 0
C=2rxF M1
i 1 -1 1 0 2 1]i 0 -
=] 1 2|+|j 2 -4+|j 1 - M1 attempt vector product
k 0 -1 k 0 0| kK 2 1
0 A+1 A
= J+O+/11/1 Al
0
which cannot be zero hence a couple E1 must observe that C is hon-zero
|C|2 _ 52 +(1_/1)2 _ 2(/1_%)2 +% M1 cr;]riz:;e]zjnrﬁtlve method to find
hence minimum magnitude of couple = % Al must be magnitude
when 1 =1 Al
[9]
(b)(i) —2wsin wt M1 differentiate r
V=| —@®Coswt Al
2
L=rxmv M1
—25sin wt + 2wt COS wt M1 attempt vector product
=m| — 4wt Sin wt — 4 coS wt Al one correct component
—2w Al all correct (aef)
[ 6 ]
i torque = d—L M1
dt
—2wCOS Wt + 2 COS Wt — 2w°1 Sin wt
= m| —4w*tcos wt — 4w sin wt + 4wsin ot M1 differentiate
0
sin wt
= —2mw’t| 2c0s wt Al aef
0
if >0, torque=0 = sinwr=cosawr =0 M1 attempt to show vector non-zero
but sin wt =0 = coswr = +1 so torque not zero E1 convincing argument

5
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3(i) 2 . 2 M1 attempt ¥ in terms of 6
V:mga0059+z(2asm%€—a) Al  GPE ( constant)
Al EPE
V'(t9)=—mgasin6’+i-2(2asin%9—a)(a005%6’) ML differentiate
2a M1 good attempt at both terms
=—2mgasin$0cos 160+ lacosi0(2sin10-1)
_ 1 mg \ain1
_ﬂacosge[—ﬂ 2(1—7jsm36J El
6
(i) O=r=cosi0=0=V"'(0)=0 M1
= equilibrium El
V“(H)=—%Aasin%@(—lJr2(1—%)sin%9j
M1 differentiate again
+/1acos%9.(1—gjcos%0
A
2mg
V'(r)=-1Aa|1-—=
=312
A< 2mg = V" (x) > 0= stable M1 consider sign of V' "(x)
El
A>2mg = V" (r) < 0= unstable B1
A=2mg = V"'(0) =2mgacostO(-1+sin$0)
V'(ir-g)=(+)(-)<0, V' (z+&)=(-)(-)>0 M1 any valid method
= minimum, hence stable Al
8
(iii) L . mg\ . .
cos56#0,V'(0)=0=-1+2 1—7 sin;60=0 M1
P |
=sing0=——0- Al or equivalent
2(1-2%)
A>2mg=0<<i=(L<)sinto<1 M1 ohly1 required to establish
sin36 <1
=>0<r El
A=2mg =sin;0=1= 0 =r as before El
A<2mg = sin%e >1= no solutions, so only & = = as E1

before
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4()) If Sm is mass lost in time ot ML change in momentum over time
PCLM mv=(m—-om)(v+6v)—om(u—v) ot
ov om om dv dm
m—=u—+ov—=>m—=—U—
ot ot ot dr dt .
d Al accept sign error
(NB using om > 0 but d—': < 0)
dm .
E=—k:>m=mo—kt M1 getm interms of ¢
= (m —kt)&—uk El
0 dr
uk .
V= j 0 de M1 separate and integrate
=—uln(my —kt)+c Al multiple of uIn(m, —kt)
t=0,v=0=>c=ulnm, M1 use initial condition
My
v=uln Al aef
my — kt
8
(ii)  matter all ejected when it =1 m, M1
_ Al cao
2k
T M1 integral
distance = j”‘uln Mo g o _
0 my —kt M1 limits (O to their ¢)
:J‘ﬂ_uln 1% g M1 rearrange into any suitable form
0 my for integrating
g i i i " M1 reasonable attempt at integral
1-—¢|In|1——+¢ || 1——¢
m my my )1, Al
_%(%In%—%——l):%(l—m) E1
8
(iii) . : -
speed when fuel runs out =uIn 1m° =uln2 M1 yse kf Mo OF their ¢ from (i}
5 My in their v
distance remaining :a—%(l—ln 2):%In2 B1
2k k
) Sen2  m, - .
time after fuel runs out =-——=— M1 their distance/their speed
uln2 2k
0 _ My
— E1  must be all correct

. my m
total time=—"+—=
2k 2k k
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2612 - Mechanics 6

General Comments

Questions one was not a popular choice, with most candidates attempting the other three
guestions. The standard of work varied widely, but most candidates were able to show
some competence at three questions.

Comments on Individual Questions

1) (i)

(ii)

(iii)
(iv)

2) (@)

(b)(¥)

(ii)

3) (i)

(ii)

(iii)

Most candidates were able to find the angular speed and deduce that slipping
occurred.

The velocity and angular velocity expressions were often well done, although
some confusion of signs occurred with the angular velocity.

Most candidates knew the condition for slipping to stop.

Most candidates assumed that the frictional force was zero without any
explanation, and then used this to show that the velocity was constant.

This part was generally done well, except few candidates pointed out that the
total moment was not zero, and hence this was a couple (rather than
equilibrium).

There were many good solutions, but some tried to work with scalars rather
than vectors.

The word ‘*hence’ indicated that candidates should use the angular
momentum, which some did not. However, there were many good solutions to
this part.

Most candidates knew what to do here, but algebraic slips were common.
Some candidates made very heavy weather of finding the gravitational
potential energy, using very complicated geometry.

This was often well done except for the A = 2mg case. In this case it was very
surprising how many candidates wrongly thought that a zero second derivative
guaranteed a point of inflection. Also surprising was that they often then
deduced that the equilibrium was stable on one side and unstable on the
other!

Again, most candidates knew what to do, but algebraic errors hindered some.
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4) ® Deriving the relevant differential equation was often done well, but some
candidates confused the signs. Most candidates found v correctly.

(i) Most candidates knew how to find the distance, but many struggled with the
integral, even with the result that was given in the question.

(iii) Some candidates produced excellent concise solutions to this part, but some
thought that integration was required.
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